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Abstract

This paper employs the beam and dipole asymptotic techniques for modelling interaction of a crack with parallel
free boundaries. Two con®gurations are considered: (1) a crack in a half-plane and (2) a crack in the centre of an
in®nite strip. Both, the stress intensity factors and the areas of the crack opening are calculated.

For the crack situated close to the boundary, the part of the material between the crack and the boundary is
represented by a beam (plate in plane-strain). This allows calculating the area of the crack opening. The stress
intensity factors are calculated by matching the beam approximation with Zlatin and Khrapkov's solution (Zlatin

and Khrapkov, 1986) for a semi-in®nite crack parallel to the boundary of a half-plane or with Entov and Salganik's
solution (Entov and Salganik, 1965) for a central semi-in®nite crack in a strip. It has been shown that this
asymptotic method allows obtaining two leading terms for the SIFs and the crack opening area.

When the distance between the crack and the free surface is large, the problem is treated in the far ®eld
approximation. This, dipole asymptotic method allows ®nding the leading asymptotic terms responsible for the
crack±boundary interaction.
For intermediate distances between the crack and the boundary, simple interpolating formulas are derived.

Particular examples of cracks loaded by pair of concentrated forces and for uniform loading are considered. The
obtained results are compared with available numerical solutions. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Crack growth in the presence of a parallel rectilinear boundary is an important situation for various
applications. Thus, the interaction between the crack and the boundary underlies some mechanisms of
skin rock burst (e.g., Fairhurst and Cook, 1966; Dyskin and Germanovich, 1993), bore-hole breakouts
(Ewy and Cook, 1990; Germanovich et al., 1994), and rock thermal spallation under the elevated
temperatures (e.g., Rauenzahn and Tester, 1989; Germanovich and Goncharov, 1997). This type of
interaction can also occur in some types of fracture toughness measurements (Obreimo�, 1930; Lawn,
1993), volcanic eruptions (Germanovich and Lowell, 1995) and brittle cutting of materials and rocks
(Ingra�ea and Heuze, 1980; Cherepanov et al., 1987; Dyskin et al., 1994a).

At present, the full solution for such problems can be obtained only numerically. This can be done
via such direct descritezation techniques as ®nite and boundary element methods (e.g., Lardner et al.,
1990) or by solving numerically a system of singular integral equations (e.g., Erdogan et al., 1973).
Another approach could be in using a solution for a dislocation in half-space (e.g., Weertman, 1996) as
the Green function. However, if the crack is situated too close to the boundary, numerical solutions can
lose the accuracy requiring signi®cant adjustments of the employed algorithm (e.g., Germanovich and
Grekov, 1998). On the other hand, integrating the Green function, in this particular case, represents a
di�cult numerical task by itself because it requires a non-obvious regularization of singular integrals in
in®nite limits prior to their computing (e.g., see example provided by Weertman, 1996). Murakami
(1987) presents two numerical solutions for the case of uniformly loaded crack in a half-plane parallel to
the free boundary. For long cracks, these solutions di�er by more than 40%. Therefore, there is a need
for asymptotic solutions that are free of such shortcomings and can serve as reference points for
verifying one or another numerical scheme. In addition, the asymptotic solutions usually provide
relatively simple analytical expressions, which are very useful when practical multi-parameter problems
are studied. Furthermore, it is much easier to analyze generic properties of multi-parameter crack
systems in the vicinities of singular points (which are normally of the main interest) in the space of
controlling parameters if analytical expressions describing the crack behavior are available
(Germanovich and Cherepanov, 1995).

The problem for interaction between a crack and a free boundary has two obvious extremes.

1. If the crack is situated far from the boundary, i.e., l/h<<1, where l is the crack half-length and h is the
distance between the crack and free boundary, the problem can be solved in power series with respect
to this ratio (e.g., Savruk, 1981; Chudnovsky and Kachanov, 1983). In this case, the main term is
provided by the solution for the crack in an unbounded body. The next term is the ®rst one
accounting for the in¯uence of the boundary. This term can be found by the method of dipole
asymptotics (e.g., Gol'dstein and Kaptsov, 1982; Kachanov, 1987; Dyskin et al., 1992; Dyskin and
MuÈ hlhaus, 1995). The method is based on considering the stress disturbance produced by the crack in
an unbounded body and keeping only the ®rst terms of the order of l 2/h 2 (in the 2-D case) which
constitute the far-®eld approximation.

2. If the crack is situated close to the boundary, i.e., l/h>>1, the material between the crack and the
boundary can be considered as a beam under the given load (e.g., Rice, 1968a, 1968b; Slepian, 1981;
Williams, 1988; Bolotin, 1996). This representation makes it possible to calculate the change, G, of
the elastic energy due to an in®nitesimal step of the crack propagation. Since GAK 2

I � K 2
II, where KI

and KII are the stress intensity factors (SIFs) of modes I (crack under pure tension) and II (crack
under transverse shear), respectively, this energy approach, in general, does not allow separating the
SIFs. In particular, Williams (1988) attempted to partition the modes by considering a strip with a
parallel crack and assuming that loading along the crack does not produce mode I stress
concentration and tearing does not produce mode II stress concentration. This is correct for a
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symmetrically loaded central crack but not in general case (e.g., see the numerical solution by Grekov
et al., 1992). Therefore, Williams (1988) assumption, in fact, raises an important and general issue of
determining for what loading a separation of fracture modes is possible. This motivated Zlatin and
Khrapkov (1986, 1990) to solve the problem for a half-in®nite crack parallel to the boundary of a
half-plane expressing the SIFs through the moment and total force of the applied load. Nazarov and
Polakova (1990), addressed a similar question for parallel cracks lying close together in a plane
region. Their results con®rm that normal and shear tractions applied separately on crack sides
generally produces both mode I and mode II SIFs.

In this paper, the results of our preliminary conference publications (Dyskin and Germanovich, 1993;
Dyskin et al., 1993; 1994b; Ustinov et al., 1994; Germanovich, 1997) are further developed and both
asymptotic cases (l/h>>1 and l/h<<1) are studied in conjunction with the problems for a crack parallel to
a half-plane boundary and a central crack in a strip. Simple approximate formulae for SIFs and the
areas of crack openings are obtained for all considered cases by interpolation between two asymptotic
solutions: for cracks close to and far from the boundary. The interpolation formulae are veri®ed against
available numerical solutions.

2. Cracks close to a free boundary. Beam asymptotic approximation

Consider a 2-D elastic problem for a ®nite crack parallel to the boundary of a semi-in®nite isotropic
plane [Fig. 1(a)]. Let the distance, h, to the boundary be much smaller than the crack length, 2l. The
goal is to calculate SIFs, energy release rate and crack opening. The method proposed in this section is
based on matching inner and outer asymptotics and allows for calculating two leading asymptotic terms.
Since l>>h, the solution for the inner region surrounding the crack tip can be obtained by considering a
semi-in®nite crack [Fig. 1(c)]. This representation is valid for all the points situated far enough from the
other tip of the crack or, in other words, for the crack points, x, such that 0 R x<<l where x is the
coordinate of a crack point and coordinate set, Oxy, has its origin, O, at the left tip of the crack [Fig.
1(c)]. The solution for the outer region can be found by employing the beam approximation [Fig. 1(b)].

Therefore, the ®rst step could be to directly use Zlatin and Khrapkov's solution for a semi-in®nite

Fig. 1. The crack close to boundary: (a) the original problem (real crack); (b) the outer problem (beam asymptotic approximation);

and (c) the inner problem (semi-in®nite crack).
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crack shown in Fig. 1(c) (inner region). However, this solution addresses only the case when neither the
crack nor the surface of the half-space are loaded. In other words, Zlatin and Khrapkov found a non-
trivial solution of a homogeneous problem and expressed the SIFs through the total moment and force
of the stresses acting on the line of the crack continuation. Fortunately, as shown in Appendix A, in the
case when the faces of the semi-in®nite crack are loaded by arbitrary load distributions bounded near
the crack tip and with ®nite total force and moment (Fig. 1), this solution permits ®nding two successive
asymptotic terms with respect to the small parameter, h/L, where L is the typical scale of the variation
of the surface traction [Fig. 1(b)]. Furthermore, for a wide range of loads, their moment about the crack
tip determines the ®rst, leading term of the asymptotics while the total force contributes only to the
second-order term.

The second step is in considering the thin layer of material between the ®nite crack and the boundary
[Fig. 1(a)] as a beam [Fig. 1(b)]. This allows obtaining the total force and moment about the beam end
(crack tip) while the expression for the displacement (de¯ection) of the beam gives an asymptotic
approximation for displacements of the crack surfaces with respect to the small parameter, h/l. This is
valid for all the points, x, of the crack located far from its ends compared to h (2lrx>> h, 2lÿx>>h ),
which gives a solution for the outer region of the considered problem.

The third step is in matching these two asymptotics; the matching region consisting of the points, x,
such that h<<x<<l. Below, the matching of the asymptotics is considered in detail.

In order to use the elementary beam solution for the determination of the total force and moment,
the end conditions are necessary. It is shown below that the conventional assumption of ideal clamping
of the beam ends (e.g., Slepian, 1981) provides only the ®rst leading term for the SIFs. To correctly
obtain the second term, one has to suppose the condition of elastic clamping. The unknown coe�cient
of elastic clamping will be determined by comparing the energy release rates computed independently,
i.e., by using:

1. the elementary beam solution and
2. the SIFs obtained by Zlatin and Khrapkov (1986, 1990).

2.1. Inner problem

Let the semi-in®nite crack occupy the part x > 0 of the x-axis [Fig. 1(c)]. The problem for such a
crack has been solved by Zlatin and Khrapkov (1986, 1990) who supposed that both the crack faces and
the half-plane boundary are free of load (homogeneous problem). They have found the eigen solutions
for this homogeneous problems satisfying the following conditions for stress distributions on crack
continuation, x< 0 [in the coordinate system shown in Fig. 1(c)]:

M �
�0
ÿ1

xsyy�x,0�dx,

N �
�0
ÿ1

syy�x,0�dx

T �
�0
ÿ1

sxy�x,0�dx, �1�

where sxy and sy are the stress components; the convergence of the integrals in Eq. (1) is presumed.
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From a physical standpoint, (N, T ) and M correspond to the total forces and moment applied at
in®nity (x 4+1) to the strip 0 R y R h of material above the crack. Indeed, they should be balanced
by the stresses acting on the line of the crack continuation (since the strip 0 R y R h, ÿ1< x< +1
is in equilibrium) resulting in Eq. (1). Following Zlatin and Khrapkov (1986, 1990), these forces and
moments are shown in Fig. 1(c) near the crack tip and are supposed to be known.

According to Zlatin and Khrapkov (1986, 1990), the expressions for the SIFs, KI and KII, and the
energy release rate, G = dU/dl, associated with an in®nitesimal step of the crack propagation have the
following form:�

KI

KII

�
� KMMhÿ3=2 � KNNhÿ1=2 ÿ

�
KT ÿ 1

2
KM

�
Thÿ1=2, �2�

dU

dl
� 1

Eh3

"
6

�
Mÿ 1

2
Th� d �Nh

�2

�h
2

2
�T�

���
3
p

N �2
#
, �3�

where factors

KM �
�
1:932
1:506

�
,

KN �
�
1:951
ÿ0:032

�
,

KT �
�
0:4346
ÿ0:5578

�

d � 0:620: �4�

Hereafter, E is Young's modulus and all the formulae are written for the case of plane stress; for the
plane strain, E should be replaced, as usual, by E/(1ÿn 2) where n is Poisson's ratio.
It should be noted that, according to the exact solution Eq. (2), the crack is under mixed-mode

conditions even if the applied load is pure tensile or shear.
Zlatin and Khrapkov (1986, 1990) assumed the crack faces and half-plane boundary to be free of

load. Consider now an arbitrary load distributed over the crack faces [Fig. 1(a)] while the half-plane
boundary is still free of tractions (otherwise, the problem could be decomposed into two: loaded half-
plane without the crack and a loaded crack in a half-plane with non-loaded boundary). Let (N, T ) and
M be the total force and moment of this load, respectively, and the characteristic size, L, associated
with the loading [Fig. 1(b)] be comparable to the crack dimension, L0 l>>h [Fig. 1(c)]. Then
M0Nl=Nheÿ1, where e=h/l, and Eq. (2) formally gives two leading consecutive terms, O(eÿ1) and
O(1), with respect to e (e4 0, h = const). Appendix A shows that Eqs. (2), (3) and (4) can indeed be
used for arbitrary loads and, furthermore, the load with zero total force and moment contributes only
to terms of higher order. In other words, the di�erence between two loads having the same total force
and moment can and will be ignored in the following consideration.
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2.2. Outer problem

In order to relate the total force, (N, T ), and the moment, M, to the external load acting on the ®nite
crack [Fig. 1(a)], the equilibrium of the semi-strip, ABOD (x < 0, 0 < y < h ), shown in Fig. 1(c) has to
be considered. Since the boundary of the semi-plane is free, the total force, (N, T ), and the moment, M,
have to be in equilibrium with the total force and the moment of the stresses, acting on line OB. They
can be determined by considering the layer between the crack and boundary as a beam (plate) and using
the corresponding solutions of the elementary beam theory. This will give two main asymptotic terms
for (N, T ) and M with respect to e=h/l (e.g., Timoshenko and Goodier, 1970).

The outer (beam) approximation is only needed to determine the corresponding total moment, M,
and force, N, to be used in Eqs. (2) and (3). Due to the condition of equilibrium, they are `transmitted'
from the outer scale to the inner one, resulting in stress concentration around the crack tip. Therefore,
the outer problem is in calculating the de¯ection of the beam (or plate in the plane strain) with certain
end conditions yet to be de®ned.

It should be noted that in the beam (plate) theory, forces and moments are associated with the
neutral line of the beam [the line passing through point O ' in Fig. 1(c)] rather than the crack face, OE.
While this does not a�ect the calculations involving the normal component of the load (since it creates
the same moment about points O and O '), the replacement of T in the above formulation with the total
shear force, Tb, acting along the neutral line will cause an additional moment, DM0Tbh about point O.
Then this moment should be added to the moment M in (2.2) and (2.3). For a beam with a symmetrical
cross section this moment is DM=Tbh/2.

Let us ®rst account only for the normal component, q(x ), of the load applied to the beam. The
di�erential equation for such a beam has the form (e.g., Landau and Lifshitz, 1959)

u 0000 � q�x�
EI

, �5�

where the beam de¯ection, u(x ), is the vertical displacement of the beam and EI is the ¯exural rigidity.
Being related to the unit length in the direction perpendicular to the drawing plane [Fig. 1(b)], the
¯exural rigidity is

EI � Eh2

12
: �6�

The general solution of Eq. (5) is

u � A� Bx� Cx2 �Dx 3 � ~u�x�, �7�

where A, B, C and D are arbitrary constants and ~u�x� is a particular solution of Eq. (5), determined by
the external load, q(x ). We chose ~u�x� such that its ®rst four derivatives are zero at x= 0. Of course, in
this case, boundary conditions for another end, x= 2l, should not be assigned for ~u�x�.

To determine A, B, C and D, four equations are required and, naturally, one may want to use four
boundary conditions for u(x ) speci®ed at the beam ends. However, the choice of boundary conditions at
the beam ends is not obvious a priori because, in reality, the beam under considerations [Fig. 1(b)]
represents the layer between the crack and the boundary [Fig. 1(a)].

In principle, the boundary conditions can be written as

ujx�0 � 0,
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ujx�2l � 0,

u 0jx�0 � kEIu 00jx�0

u 0jx�2l � kEIu 00jx�2l: �8�

The ®rst two conditions in Eq. (8) express the displacement continuity at the beam ends. The other
two represent the condition of elastic clamping for the left (x= 0) and right (x = 2l ) ends of the beam
(k is the coe�cient of elastic clamping). This coe�cient will further be determined by matching the outer
and inner asymptotics.

The moment and shear force distributions along the beam are given by the well known formulae (e.g.,
Landau and Lifshitz, 1959)

M�x� � EI � u 00�x�

N�x� � ÿEI � u 000�x�: �9�

The ®rst condition in Eq. (8) suggests that A= 0. Using Eq. (7), the constants C and D can be
expressed in terms of the shear force and moment acting at the beam end, x= 0:

C � M�0�
2EI

D � ÿN�0�
6EI

: �10�

The constant B is the angle of the beam rotation about point O [Fig. 1(b)]. In the general case, the
angles of rotation at the beam ends only depends upon the bending moment of the beam at those
points, while shear forces does not a�ect the angles1. This dependence is linear because the beam is
meant to represent the outer asymptotics for a problem which is linearly elastic. Generally, the
coe�cient of proportionality is a function of elastic modulus and geometry of the beam cross section.
Therefore, the condition of elastic clamping shall be presumed: the angle is proportional to the bending
moment with an (unknown) coe�cient depending on elastic, E, and geometric, h, parameters.

Since the theory of elasticity is a local theory, in the beam approximation, the coe�cient of elastic
clamping, k, should be independent of the beam length, 2l. The dimension analysis then gives:

B � kM�0� � k
1

h2
M�0�
E
� k

h

12
u 00�0�, �11�

where k is a dimensionless constant.
Thus, three parameters, M(0), N(0) and k can be expressed through three constants, B, C and D. To

determine these constants, Eqs. (7) and (11) should be substituted into Eq. (9), which gives A = 0 and

1 Indeed, due to the linearity of Hook's law, the total force and moment at a point x asymptotically representing stresses in the

beam approximation are linear combinations of u(x ) and u '(x ). Since, at the beam ends, u(0)=u(2l )=0, resolving these linear com-

binations with respect to angles u '(0) or u '(2l ) immediately shows that the angles are proportional to the corresponding moments.
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8>>>>>><>>>>>>:

2Bl� 4Cl2 � 8Dl3 � ~u�2l � � 0

B � k

6
hC

B� 4Cl�12Dl2 � ~u 0�2l � � ÿk
�
1

6
hC�Dlh� 1

12
~u 00�2l �h

� : �12�

By introducing a small parameter, e=h/l, the solution of Eq. (12) can be written in the following form0BBBBB@
2l 4l 8l

1 ÿk
6
e 0

1 4� k

6
e 12� ke

1CCCCCA�
0@B
Cl
Dl2

1A �
0BB@

ÿ ~u�2l �
0

ÿ ~u�2l � ÿ k

12
~u 00�2l �le

1CCA �13�

0@B
Cl
Dl2

1A �
266666664

0BBBBB@
0 1 0

3

4l
ÿ1 ÿ1

2

ÿ 1

4l

1

4

1

4

1CCCCCA� ke

0BBBBBBB@

1

8l
ÿ1
6
ÿ 1

12

5

16l

5

24

1

6

1

16l
ÿ 1

16
ÿ 1

16

1CCCCCCCA�O�e2�

377777775
�

0BB@
ÿ ~u�2l �

0

ÿ ~u�2l � ÿ k

12
~u 00�2l �le

1CCA: �14�

As follows from Eq. (1), ~u�x� � 12E ÿ1hÿ3f �x,l �, where the function f(x,l ) depends on the applied
load, but is independent of h. The dimensional analysis then suggests that ~u�x� � 12E ÿ1hÿ3l4f �x=l �.
Therefore, ~u 0�2l �A ~u�2l �=l and ~u 00�2l �A ~u 0�2l �=l . The coe�cients of proportionality in these relationships
cannot depend upon the applied load because of the linearity of the elastic beam problems. At the same
time, they do not depend upon h. Therefore, all terms containing k are of the order of e or higher.
Substitution of Eq. (14) into Eq. (9) and accounting for Eq. (11) gives

M�0� � 2CEI � Eh3

12

��
~u 0�2l �
l
ÿ 3

2

~u�2l �
l2

�
� ke

�
3

8

~u�2l �
l2
ÿ ~u 0�2l �

3l
� 1

12
~u 00�2l �

��
�O�e2�

N�0� � ÿ6DEI � Eh3

12

��
3

2

~u�2l �
l3
ÿ 3

2

~u 0�2l �
l2

��
�O�e2�: �15�

Note that ~u�x�, ~u 0�x�, ~u 00�x�Ahÿ3.
It is seen from Eq. (15) that the coe�cient of elastic clamping only contributes to the second

asymptotic term. Thus, if only the leading terms are sought the coe�cient k can be set to zero, which
corresponds to the condition of ideal clamping. For the determination of the second term, this
coe�cient has yet to be found, which will be done in the next section.
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2.3. Matching inner and outer asymptotics

The next step is in matching inner and outer asymptotics. The only free parameter which is left is the
constant, k. This constant will be determined by comparing the energy release rates in the outer and
inner asymptotics.

Since k characterizes the clamped end of the beam, it does not depend on a particular load
distribution and can be determined from any type of loading. Consider the simplest one: the normal
force P acting at a distance l from the clamping point O of a semi-in®nite beam2 (Fig. 2), while the rest
of the beam is free. This represents a semi-in®nite crack loaded by a pair of concentrated forces, P, at a
distance l from the tip. Then M(0)=Pl, N(0)=P, T= 0.
Considering Eq. (7), the bending energy of such a beam can be written as

U � 1

2
Pu�l � � P

2
�Bl� Cl2 �Dl3�: �16�

By inserting Eqs. (10) and (11) into Eq. (16), the energy can be rewritten in the following form:

U � 6P2

Eh3

�
l3

3
� khl2

12

�
: �17�

Then the energy release rate is (see also Rice, 1968a, 1968b):

dU

dl
� P2l2

Eh3

�
6� k

h

l

�
: �18�

This energy release rate should coincide with the one computed from considering the stress state at
the vicinity of the crack tip3, i.e., with Eq. (3). The comparison of the ®rst two asymptotic terms gives

k � 12d � 7:440: �19�
Thus, the elastic clamping constant has been determined for the beam representing the layer between

the crack and free boundary.
Therefore, in order to calculate the stress intensity factors for a crack parallel to a free rectilinear

boundary, it is necessary to consider the corresponding beam under the conditions of elastic clamping,
coe�cient being k=k/(Eh 2)=12d/(Eh 2)=dh/(EI ), and calculate the bending moment and total force at

Fig. 2. Simple con®guration for determining the elastic clamping constant.

2 In the vicinity of the end where the matching is conducted, the beam can be considered as semi-in®fnite.
3 Strictly speaking, the energy release rates computed from the elementary beam solution and from the SIFs belong to di�erent

scales, greater and less than h, respectively. However, as shown in Appendix B, their matching is still possible with the adopted ac-

curacy.

A.V. Dyskin et al. / International Journal of Solids and Structures 37 (2000) 857±886 865



its end. It is seen from Eq. (15) that only the second term in the expansion for M, i.e. the term of the
order of e, depends on k. This means that if only the main asymptotic term of the SIF is sought,
coe�cient k may be chosen arbitrarily, e.g., set to zero, which is the pure clamping state. Accordingly,
the main asymptotic term for the SIF is�

KI

KII

�
� KMM0h

ÿ3=2, �20�

where M0 is determined from the problem for a purely clamped beam (k = 0).
The area of the crack opening can be calculated by integrating the vertical displacements of the upper

and the lower faces of the crack. The contribution of the displacement of the upper face can be
calculated by integrating the beam de¯ection Eq. (7):

S �
� l
0

u�x�dx: �21�

Since the expression for beam de¯ection Eq. (8) should, in general, contain a term x 3, the integral of
Eq. (21) would be of the order of l 4. As demonstrated in Appendix C, Eq. (C1), the displacement of the
lower face would, at most, be of the order of l 2 ln(l/h ), which gives two orders less contribution into the
area than the upper face one. Therefore with the adopted accuracy, only the area produced by the beam
de¯ection has to be taken into account.

Finally, to calculate two asymptotic terms of area of the crack opening, it is necessary to calculate the
integral of de¯ection of the beam with the above-determined condition of elastic clamping. Similarly to
the case of SIFs, to calculate the main asymptotic term of the area of the crack opening, it is su�cient
to calculate the integral of the beam de¯ection under the condition of pure clamping.

When the crack faces are subjected to shear loading, it should be noted that it does not contribute to
the moment about the crack tip, while the total shear force, T, contributes only to the second
asymptotic term. Hence, the shear force acting at the crack ends can be determined without considering
beam de¯ections, e.g., directly from the shear traction distribution.

Note that Eq. (15) is mainly needed for analysis of the orders (with respect to e ) of the terms in Eqs.
(4) and (21). In many cases, in order to ®nd the moment and force, it is easier to solve the
corresponding beam problem assuming elastic clamping at its ends rather than use Eq. (15). In the case
of symmetrically loaded beam though, Eq. (15) allows us to express the terms of both orders (01 and
0e ) through the moment and force obtained for pure clamping.

2.4. Symmetrically loaded beam

If the applied load is symmetrical over the mid-point of the crack, then instead of the last equation in
Eq. (12), the following condition can be used

u 0�l � � 0: �22�
Similarly to Eq. (15), the solution of the corresponding system in this case is

M�0� � 2CEI � EI

�
~u 0�2l �
l
ÿ 3

2

~u�2l �
l2

�
�1ÿ de� �O�e2� �M0�1ÿ de� �O�e2�

N�0� � ÿ6DEI � EI

�
3

2

~u�2l �
l3
ÿ 3

2

~u 0�2l �
l2

�
�O�e2� � N0 �O�e2�: �23�
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Here M0 and N0 are the bending moment and shear force for the corresponding purely clamped beam
(k= 0). Also, the expression for D not containing k coincides with the one for the purely clamped
beam. The expression for M(0) in Eq. (23) di�ers from the corresponding expression for the purely
clamped beam by a factor of (1ÿed ). Therefore, in order to calculate two main asymptotic terms of the
SIF for a symmetrically loaded beam the following formula can be used:�

KI

KII

�
� KMM0�1ÿ de�hÿ3=2 � KNN0h

ÿ1=2 ÿ
�
KT ÿ 1

2
KM

�
Thÿ1=2: �24�

By substituting Eq. (14) into Eq. (8) with the aid of Eq. (10), the expression for the area of the crack
opening can be obtained:

S � 2

� l
0

�Bx� Cx2 �Dx 3 � ~u�x��dx � S0 � 8dM0l
2

Eh2
: �25�

Here, S0 is the area calculated using the pure clamping condition.

2.5. Examples of symmetrical beams. Pair of concentrated forces and uniform load

For a crack of length 2l parallel to a free rectilinear boundary situated at a distance h<<l apart from
it, two types of loading will be considered: a pair of concentrated forces, P [Fig. 3(a)] and a uniform
stress distribution, p [Fig. 3(b)].

According to the above method, the layer between the crack and the surface has to be treated as a
clamped beam, and the bending moment and de¯ection have to be calculated. For the problem from
Fig. 3(a), the de¯ection of the part (0, l ) of the beam and the moment M0 are (e.g. Landau and Lifshitz,
1959):

u � P

2Eh3
x2�3lÿ 2x�

M0 � Pl

4
: �26�

As before, only plane stress is considered; the plane-strain expressions can be obtained by replacing
Young's modulus, E, with E(1ÿn 2), where n is Poisson's ratio.

By substituting Eq. (26) into Eqs. (2) and (4), the asymptotics for both modes of the SIF can be
found:

Fig. 3. Beam under a pair of concentrated forces at the centre (a); and under uniform loading (b).
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KI � P
l

h3=2
�0:483� 0:67e�O�e2��

KII � 0:3765P
l

h3=2
�1� 0:249e� o�e��: �27�

The leading asymptotic terms in Eq. (27) can be reduced to the ones obtained by Nazarov and
Polakova (1990) after correcting a misprint in that paper.

The integration of the beam de¯ection Eq. (26) and substitution of the result, S0, into Eq. (25) gives

S � Pl

�
1

2E
eÿ3 � 1:240

E
eÿ2

�
: �28�

For the case of uniform loading, the de¯ection of the part (0, l ) of the beam and the bending moment
are

u � P

2Eh3
x2�2lÿ x�2

M0 � pl2

3
: �29�

Accordingly, the SIFs and the area of the crack opening are:

KI � 0:644 p
l2

h3=2
�1 � 1:551e�; KII � 0:502p

l2

h3=2
�1 � 1:534e�

S � pl2
�

8

15E
eÿ3 � 1:653

E
eÿ2

�
: �30�

Comparison with the numerical results will be described in Section 4.

3. Dipole asymptotics

This method allows calculation of the interaction between the crack and the free surface when the
distance from the surface is much greater than the crack size. In general, the interaction can be
calculated by introducing an additional stress (not necessarily uniform) distributed over the crack length.
This additional stress is the stress produced by the crack and `re¯ected' from the boundary (the exact
sense of the re¯ection will be speci®ed later). In the 2-D case, the crack-produced stress disturbance
vanishes at in®nity as (l/x )2, where 2l is the crack length; the re¯ected ®eld has the same order. If the
crack is situated at a distance h>>l from the boundary, the main term of this additional ®eld on the
crack line has the order (l/h )2, while its variation within the crack length is of the next order, (l/h )3.
Therefore, to obtain the ®rst asymptotic term, it is su�cient to assume this additional stress to be
uniform and equal to the stress that would be produced in the original material without the crack at the
location of its centre. Moreover, it is su�cient to calculate this additional stress with the same accuracy,
(l/h )2. Then this ®eld formally coincides with the stress ®eld produced by a proper combination of force
dipoles situated in the solid material at the place of the crack center (e.g., see details and the history of
the method in the papers by Dyskin et al., 1992 or Dyskin and MuÈ hlhaus, 1995). It is also analogous to
the ®eld generated by a pair of opposite sign dislocations separated by some distance and often referred
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to as dislocation dipoles (e.g., Weertman, 1996). That is why this method is called the dipole asymptotic
method.

Let us consider a half-plane with a crack of length 2l situated at a distance h>>l from the boundary
(Fig. 4) and introduce the complex variable z=x + iy. Let z0=ÿih be the coordinate of the crack
center. It is convenient to employ Muskhelishvili's complex potentials, F(z ) and C(z ) (Muskhelishvili,
1963). Then the corresponding stresses can be expressed as

sxx � syy � 2�F�z� � F�z��

syy ÿ sxx � 2itxy � 2� �zF 0�z� �C�z��: �31�
According to the outlined method, the ®rst step in obtaining the dipole asymptotics is the calculation

of the remote supplementary stress ®eld generated by the crack in an in®nite plane. The complex
potentials of this ®eld have the form

DF�z� � 1

2pi
��������������
z2 ÿ l2
p

�l
ÿl

�������������
t2 ÿ l2
p

�s0�t� � it0�t��
tÿ z

dt

DC�z� � DF� �z� ÿ DF�z� ÿ zDF 0�z�, �32�
where s0(t ) and t0(t ) are the external tractions applied to the crack faces. The asymptotic form of this
®eld in the case when the crack is situated at point z0=ÿih is

DF�z� � D1

�z� ih�2 �O

�
l3

h3

�

DC�z� � D2

�z� ih�2 �
2ihD1

�z� ih�3 �O

�
l3

h3

�
, �33�

where the complex constants D1 and D2 have the units of moment (per unit length in the direction
normal to the plane of drawing) and characterise the dipole moments of the force dipoles representing
the crack. They can be expressed as follows

D1 � i

2p

�l
ÿl

�������������
t2 ÿ l2
p

�s0�t� � it0�t��dt � iS

8p

D2 � D1 � �D1: �34�

Fig. 4. Crack situated far from the boundary.
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The next step consists of re¯ecting this ®eld from the free boundary. This means that the crack-
induced stresses, Dsy and Dtxy, on the line of the future semi-plane boundary ( y = 0) have to be
applied with inverse sign to the boundary of a half-plane without the crack. The potentials for a half-
plane, the boundary of which is loaded by normal sN and shear sT tractions, have the form (e.g.,
Muskhelishvili, 1963)

Fr�z� � ÿ 1

2pi

�1
ÿ1

sN ÿ isT
tÿ z

dt

Cr�z� � ÿ 1

2pi

�1
ÿ1

sN � isT
tÿ z

dt� 1

2pi

�1
ÿ1

sN ÿ isT
�tÿ z�2 t dt: �35�

By assuming sN=ÿDsy|y = 0 and sT=ÿDtxy|y = 0 and substituting this into Eq. (35), the potentials
can be obtained for the re¯ected stress at the crack line

Fr �
�D1 ÿ �D2

�zÿ ih�2 �
4ih �D1

�zÿ ih�3 �O

�
l3

h3

�

Cr �
�D2

�zÿ ih�2 ÿ
ih�2 �D2 ÿ 10 �D1�
�zÿ ih�3 ÿ 4h2 �D1

�zÿ ih�4 �O

�
l3

h3

�
: �36�

Variations of these potentials over the crack length are of the order of O(l/h )3. Therefore, with the
adopted accuracy they can be neglected. This means that the main asymptotic term of the e�ect of the
crack±boundary interaction can be obtained by assuming the crack to be additionally subjected to
uniform stresses (e�ective stresses, e.g., Chudnovsky and Kachanov, 1983) which are equal to

sr � 3

h2
Re D1 �O

�
l3

h3

�

tr � ÿ 1

h2
Im D2 �O

�
l3

h3

�
: �37�

As a result, the SIFs are obtained by adding these tractions to s0(t )+it0(t ) and considering the crack
as being located in the in®nite plane:

KI � iKII � ÿ 1������
pL
p

"�l
ÿl
�s0�x� � sr � it0�x� � itr�

�������������
L� x

Lÿ x

r
dx�O

�
l3

h3

�#
: �38�

The area of the crack opening can be calculated with the same accuracy by considering the crack
under the ®eld s(x )=s0(x )+sr (e.g., Dyskin and Salganik, 1987); for the plane stress approximation, it
has the form

S � 4

E

�l
ÿl

���������������
l2 ÿ x2
p

s�x�dx�O

�
l3

h3

�
: �39�

Then
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S � S0 � 8

E

�
3p
4

l2

h2
Re D1 �O

�
l3

h3

��
, �40�

where S0 is the opening area without the in¯uence of the boundary.
If the initial load is given by a pair of concentrated forces, P [Fig. 3(a)], then

sr � 3P

2p
l

h2
,

D1 � Pl

2p
�41�

and, according to Eqs. (38) and (40), the expressions for the SIFs and area of the crack opening have
the form

KI � P����
pl
p

"
1� 3

2

�
l

h

�2

�O
�
l

h

�3
#
,

KII � 0�O

�
l

h

�3

S � Pl
4

E

�
1� 3

4

l2

h2
�O

�
l3

h3

��
: �42�

If the initial stress is a uniform normal pressure, p [Fig. 3(b)], applied to the crack surfaces, then

sr � 3p

4

l2

h2

D1 � pl2

4
: �43�

Accordingly, the expressions for the SIFs and area of the crack opening have the form

KI � P
����
pl
p

"
1� 3

4

�
l

h

�2

�O
�
l

h

�3
#
,

KII � 0�O

�
l

h

�3

S � Pl2
2p
E

�
1� 3

4

l2

h2
�O

�
l3

h3

��
: �44�

Chudnovsky and Kachanov (1983) followed by Kachanov (1987) considered the interaction of cracks
taking into account the non-uniformity of the supplementary stresses over the crack line. This allows
calculating the next asymptotic term which is beyond the accuracy adopted in this work.
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4. Interpolation between two asymptotics. Comparison with numerical solutions

The considered asymptotic solutions are valid for the cracks situated very close to and very far from
the boundary. It is natural to obtain general expressions for the stress intensity factors by interpolation
between these two extreme cases. The interpolating formula can be derived using the following idea. The
result from dipole asymptotics is multiplied by the function 1/(1+aln ) (it is assumed that the lengths are
normalised by h, i.e. that h = 1) that approaches unity as l 4 0 and approaches zero as l41. The
result from beam asymptotics is multiplied by the function aln/(1+aln ) that approaches zero as l 4 0
and approaches unity as l41. Therefore, both asymptotics contribute exclusively within the domains
of their validity. This gives the following interpolating formula:

Ki � Ki0 � DK dip
i � aDK beam

i ln

1� aln
, �45�

where Ki0 is the SIF for the particular loaded crack in an in®nite body, DK dip
i � Ki0 and DK beam

i are the
SIFs for the dipole and the ®rst term of the beam asymptotics, respectively, a and n are parameters. For
l>>1 and l<<1, Eq. (45) is asymptotically equal to the beam and dipole asymptotics, respectively. Here,
only supplemental parts of the SIFs are interpolated, re¯ecting the fact that the initial stresses do not
change due to interaction with the surface and contribute everywhere.

Parameter a in Eq. (45) characterises the location of the domain where one asymptote is transferred
into the other; parameter n characterises the width of the domains. These parameters will be determined
by ®tting Eq. (45) to the results of numerical calculations found in the literature. The obtained values of
these parameters will be shown to be consistent for all considered cases, indicating that the width and
the location of the domains remain the same for all considered examples.

For the case of crack loaded by a pair of concentrated forces, the interpolation formulae for both
modes of SIF have the form

KI

P
� 1����

pl
p � 1��

l
p Fl2 � Gal3

1� al1:5

KII

P
� Hal2:5

1� al1:5
, �46�

where constants F= 0.5/Zp, G= 0.453, H = 0.377 are set according to Eqs. (27) and (42) applied to
the case h = 1. The values of parameters, a = 1.78 (for the ®rst mode), 1.81 (for the second mode) and
n = 1.5, were determined by the least square method matching of Eq. (46) to the numerical data of
Germanovich and Grekov (1998). The comparison is shown in Fig. 5 (note, the dipole asymptotics
contribute nothing into KII). Relative errors are less than 1.5% for the ®rst mode of the SIF and 2.2%
for the second mode.

For a uniformly loaded crack, the interpolation formulae assume the form

KI

P
�

����
pl
p
�

��
l
p Fl2 � Gal3

1� al1:5

KII

P
� Hal3:5

1� al1:5
, �47�

where F= 3Zp/4, G= 0.483; H = 0.377. Fig. 6 shows comparison of Eq. (47) with the numerical
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results by Erdogan et al. (1973) and Higashida and Kamada (1982); see also Murakami (1987). One can
see that the numerical results from the di�erent sources do not coincide; neither do di�erent handbook
descriptions based on the original publications (compare Tada et al., 1985, who use the results by
Erdogan et al., 1973, with Savruk, 1981, who utilizes the results by Ashbaugh, 1975). The comparison
with the result given by the beam asymptotic approximation allows us to make the choice; indeed, only
Higashida and Kamada's solution is in good agreement with the asymptotics (Higashida and Kamada,

Fig. 5. Comparison with numerical data for a crack loaded by a pair of concentrated forces.
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Fig. 6. Comparison with numerical data for a uniformly loaded crack.
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1982). The constants determined from matching Eq. (47) to this solution are a = 1.8 and n = 1.5, which
are close to the values obtained for the case of concentrated forces.

5. Strip with a central crack

5.1. Beam asymptotics

The analogue of Eq. (2) for the semi-in®nite crack in the strip under normal loading can be obtained
from the results of Entov and Salganik (1965) and Foote and Buchwald (1985).

KI � 2
���
3
p

hÿ3=2M� 2 � 0:6731
���
3
p

hÿ1=2N�O�eÿlmin=h�, �48�
where M and N are the bending moment and total force applied at the upper layer (above the crack);
lmin is the minimum distance from the point of loading.

For the general distribution of normal loading, the direct application of the results from Appendix A
concerning the layer between the crack and the boundary shows that the moment, M, and total force,
N, fully determine the ®rst two asymptotic terms for the SIF (due to symmetry, in the absence of shear
loading, only the mode I SIF is not zero).

For the shear loading, the relation between the main asymptotic term of the second mode of the SIF
and the shear force T can be obtained as follows. Consider an in®nite beam with a central semi-in®nite
crack loaded by forces applied as shown in Fig. 7(a). Since in the beam theory, the forces are assumed
to be applied to the neutral axis of the beam, as shown in Fig. 7(b), the bending moment Th/2 should
be additionally applied at the crack tip to compensate the shift of the loads. The potential energy of the
whole strip, which is double the energy of the beam, includes the energy of longitudinal deformation
and the energy of bending:

U � T 2l

Eh
� 3T 2l

Eh
� 4T 2l

Eh
: �49�

The energy release rate is

dU

dl
� 4T 2

Eh
: �50�

Owing to symmetry, only the second mode of the SIF is non-zero in this case, therefore

dU

dl
� K 2

II

E
: �51�

The comparison of Eqs. (50) and (51) gives

Fig. 7. Crack in a strip under pure shear.
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KII � 2Thÿ1=2: �52�
Due to linearity, an arbitrary stress distribution can be considered as a superposition of the

concentrated forces, thus Eq. (52) remains applicable for any shear loading with the total T; it follows
from Appendix A that the details of the distribution a�ect only terms of higher order than in Eq. (52).

After collecting the results together, both modes of the SIF and the energy release rate can be
expressed in the following form�

KI

KII

�
�
�
2
���
3
p

0

�
hÿ3=2M�

�
2:332
0

�
hÿ1=2N�

�
0
2

�
hÿ1=2T

dU

dl
� 12�M� 0:6731Nh�2

Eh3
� 4T 2

Eh
: �53�

By repeating the procedure of matching the asymptotics, described in Section 2, it can be shown that
the total force, N, and moment, M, can be found by considering the corresponding clamped beam with
the coe�cient of elastic clamping

k 0

Eh2
� hd 0

EI
, d 0 � 0:673: �54�

It has been taken into account that, in the case of the strip, both faces of the crack correspond to
beams and contribute equally to the main term.

For pure tensile cracks, the ®nal expression has the form

KI � 2
���
3
p

M0

�
1ÿ d 0

h

l

�
hÿ3=2 � 2

���
3
p

dNhÿ1=2, �55�

where M0 is the bending moment calculated for the purely clamped beam.

5.2. Examples of symmetrically loaded cracks

Consider a strip of thickness 2h with a symmetrically located (central) parallel crack of length 2l.
Three types of loading will be considered: loading with the pair of normal concentrated forces P applied
at the crack centre [Fig. 8(a)], uniform loading with the normal stress p [Fig. 8(b)], uniform loading with
a shear stress t [Fig. 8(c)]. Due to symmetry, only the ®rst modes of SIF are present in the ®rst two
cases and only the second mode is present in the third case.

By substituting Eq. (26) or Eq. (29) into Eq. (55) (similar to Section 2.5), the SIF for loading by a
pair of concentrated forces [Fig. 8(a)] and for uniform loading [Fig. 8(b)] can be found in the following
form:

KI � P

���
3
p

2

l

h3=2

�
1� d 0

h

l
�O

�
h2

l2

��
for Fig: 8�a�, �56�

KI � p
2
���
3
p

3

l2

h3=2

�
1� 2d 0

h

l
�O

�
h2

l2

��
for Fig: 8�b�: �57�

The main asymptotic terms in Eqs. (56) and (57) may also be obtained by considering the energy
balance of the clamped beams (e.g. Rice, 1968a, 1968b; Slepian, 1981).

For the case of uniform shear loading, t [Fig. 8(c)], the SIF is
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KII � 2t
l

h1=2

�
1�O

�
h

l

��
: �58�

The comparison of these asymptotic solutions with the numerical results of Cinar and Erdogan (1983)
are presented in Figs. 9±11.

The area of the crack opening can be calculated the same way as for the cracks in half-plane.
However, here the displacements of both upper and lower faces correspond to de¯ections of the beams.
Therefore, the area of the crack opening for these cases should be calculated by doubling the
corresponding results for the half-plane problems. For the third case, the area of the crack opening (the
®rst mode opening, to be precise) is obviously equal to zero.

5.3. Dipole asymptotics

When the crack length is much less than the strip width, the dipole asymptotic solution (e.g. Savruk,
1981) gives

K
dip
I �

P����
pl
p

�
1� 2:2836

l2

h2
�O

�
l4

h4

��
for Fig: 8�a�, �59�

K
dip
I � p

����
pl
p �

1� 1:1417
l2

h2
�O

�
l4

h4

��
for Fig: 8�b� �60�

K
dip
II � t

����
pl
p �

1� 0:6668
l2

h2
�O

�
l4

h4

��
for Fig: 8�c�: �61�

Fig. 8. Central crack in a strip.
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The areas of the crack openings can be calculated similarly to the case of the half-plane. The results
are:

Sdip � P
8

E
l

�
0:5� 0:570

l2

h2
�O

�
l4

h4

��
for Fig: 8�a� �62�

Sdip � p
8

E
l2
�
p
4
� 0:895

l2

h2
�O

�
l4

h4

��
for Fig: 8�b�: �63�

For the third case, the area is evidently of the order neglected in this approximation.

5.4. Interpolation

The interpolation in the form of Eq. (45) may be suggested to extend the obtained asymptotic
solutions for arbitrary values of l/h. For the problem from Fig. 8(a), the interpolating formula is the
same as the one for the ®rst mode of the SIF from Eq. (46), the constants being F= 2.2836/Zp and
G=Z3/2. The parameters a = 1.84 and n = 1.5 were determined by the least square method so that the
formulae ®t the numerical data of Cinar and Erdogan (1983).

For the problem from Fig. 8(b), the interpolating formula for KI has the form of Eq. (47), the
constants being F= 0.147Zp, G = 2Z3/3, a = 1.808 and n = 1.5. The comparison with the numerical
results of Cinar and Erdogan (1983) is presented in Figs. 9±11. The interpolation for the case of shear
[Fig. 8(c)] were not conducted since the beam asymptotics coincided relatively well with the available
numerical data for all values of l/h (see Fig. 11).

Fig. 9. Comparison with numerical data for a crack loaded by a pair of concentrated forces.
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6. Conclusion

The obtained asymptotic solutions provide a powerful tool for analysing the interaction between a

crack and one or two parallel free boundaries. The beam approximation accounts for small distances

between the crack and the boundary, while the dipole asymptotics accounts for large distances.

Fig. 10. Comparison with numerical data for a uniformly loaded crack in a strip.

Fig. 11. Comparison with numerical data for the crack in a strip under shear.
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Nevertheless, the comparison with various numerical results suggests that the ranges of applicability of
these two asymptotics are rather wide. For intermediate distances a simple two-parametric interpolating
formula allows covering the whole range of the distances and gives results which correspond well to the
numerical data. It is interesting that the values obtained for the parameters of the interpolating formulae
by ®tting to the numerical data are consistent for di�erent geometries and loads.

All the results including the interpolating4 formulae for the above value of parameter n are collected
in Tables 1 and 2. For all the examples, it is supposed that h= 1.

Table 1

The obtained asymptotic and interpolating formulae for SIFs. Whenever the values of KII are relevant, they are presented in brackets

Con®guration

K1/P, or K1/p

Dipole Beam Interpolation

Strip, pair of concentrated forces
1����
pl
p � 1:289 l1:5

���
3
p

2
l

1����
pl
p � 1��

l
p Al2 � Bal3

1� al1:5

A � 1:289; B �
���
3
p

2
; a � 1:84

Strip, uniform normal loading
����
pl
p � 2:023l2:5

2
���
3
p

3
l2

����
pl
p � ��

l
p Al2 � Bal3

1� al1:5

A � 2:032; B � 2
���
3
p

3
; a � 1:808

Half-plane, pair of concentrated forces
1����
pl
p � 3

2
���
p
p l1:5

0.483l

KII=0.337l

1����
pl
p � 1��

l
p Al2 � Bal3

1� al1:5

A � 3

2
���
p
p ; B � 0:483; C � 0:377; a � 1:78

�
KII � Cal2:5

1� al1:5
, a � 1:81

�

Half-plane, uniform normal loading
����
pl
p � 3

���
p
p
4

l2:5
0.644 l 2

(KII=0.502 l 2)

����
pl
p � ��

l
p Al2 � Bal3

1� al1:5

A � 3
���
p
p
4

; B � 0:644; C � 0:502; a � 1:8

�
KII � Cal3:5

1� al1:5
, a � 1:8

�

4 The interpolation was conducted only for the cases when the corresponding numerical results were available. That is why inter-

polating formulae for the area of the crack opening are not provided.
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Appendix A. Contribution of load with zero total and moment into the stress intensity factors

Let the semi-in®nite crack occupy the part x> 0 of the x-axis [Fig. 1(c)]. According to the solution
by Zlatin and Khrapkov (1986), the stress intensity factors, KI and KII, and the energy release rate due
to crack propagation are given by Eqs. (2) and (3). In this solution, the crack faces are supposed to be
free of load; hence, in this sense, it is a solution of the homogeneous problem chosen in such a way that
the given total force and moment are produced by the stress distribution on the crack continuation line,
x> 0, y = 0 [Fig. 1(c)]. In order to be able to use Eqs. (2) and (3) for a non-homogeneous problem,
i.e., for the semi-in®nite crack loaded within the interval (0, l ), it is necessary to show that Eqs. (2) and
(3) correctly give the ®rst two asymptotic terms with respect to l/h 41. In other words, varying load
distributions while keeping the same total force and moment should a�ect only terms of the order of
Nhÿ1/2o(1).

We will begin the proof with a particular case of a concentrated force (N, T ) applied at a distance
l>>h from the crack tip (Fig. A1). It will be shown that�

KI

KII

�
h1=2 �

�
KM

l

h
� KN � o�1�

�
N� �KT � o�1��T as

l

h
41: �A1�

Table 2

The obtained asymptotic formulae for the area of crack opening

Con®guration

Area S
P

k�1
m

Dipole Beam

Strip, pair of concentrated forces 0.5 l+ 0.570 l 3 1/8 l 4

Strip, uniform loading p/4 l 2+0.895 l 4 2/15 l 5

Half-plane, pair of concentrated forces 1/2 l+ 0.375 l 3 1/16 l 4

Half-plane, uniform loading p/4 l 2+3p/16 l 4 1/15 l 5

Fig. A1. Crack loaded by a pair of concentrated forces.
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Indeed, since the problem is linear, for the normal force, N, the SIFs can be written as follows�
KI

KII

�
h1=2 �

�
KM

l

h
� KN � fN

�
l

h

��
N�

�
KT � fT

�
l

h

��
T, �A2�

where fN(l/h ) and fT(l/h ) are some continuous functions yet to be estimated. However, according to Eq.
(2),

lim
l41

�
KI

KII

�
h1=2 �

�
KM

l

h
� KN

�
N� KTT: �A3�

Hence,

fN

�
l

h

�
40;

fT

�
l

h

�
40 as

l

h
41 �A4�

which proves Eq. (A1).
Note that expression (A1) was written for l41, h = const., but can also be looked upon as being

valid for h 4 0, l= const. Therefore, the above result is also valid for any number of concentrated
forces, as long as there exists a minimum distance, lmin, so that a force cannot be applied closer to the
crack tip. Then, the error of the asymptotics, Eqs. (2) and (3), vanishes as h/lmin 4 0.

Consider now the case of a continuous load distribution, s(x ), t(x ), 0 R x R l, where l is ®xed and
s(x ) and t(x ) are independent of h. Then, the case of a distributed load can be analyzed using Eq. (A2)
as a Green function:�

KI

KII

�
h1=2 � KM

M

h
� KNN� KTT�

�l
0

fN

�
x

h

�
s�x�dx�

�l
0

fT

�
x

h

�
t�x�dx, �A5�

where

M �
�l
0

xs�x�dx;

�N,T � �
�l
0

�s�x�,t�x��dx: �A6�

By introducing a x $ (0, l/h ), the ®rst integral in Eq. (A5) can be written in the following form:

IN�h,l � �
�l
0

fN

�
x

h

�
s�x�dx �

�xh
0

fN

�
x

h

�
s�x�dx�

�l
xh
fN

�
x

h

�
s�x�dx: �A7�

The last integral in Eq. (A7) can be evaluated for h 4 0 as follows:�����
�l
xh
fN

�
x

h

�
s�x�dx

�����R
�l
xh

�����fN
�
x

h

������js�x�jdxRmax
�xh,l �

�����fN
�
x

h

������
�l
xh
js�x�jdxRmax

�xh,l �

�����fN
�
x

h

������
�l
0

js�x�jdx: �A8�
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Suppose that the absolute value of the load s(x ) is integrable. Then for any given e > 0, the integral
can be made less than e/2 by choosing su�ciently large x.

Now consider the ®rst integral in Eq. (A7) for the chosen value of x. Suppose s(x )0s0 as x 4 0.
Then �xh

0

fN

�
x

h

�
s�x�dx � h

�x
0

fN�t�s�th�dt0hs0

�x
0

fN�t�dt for h40, �A9�

provided that the integral

I0 � s0

�x
0

fN�t�dt

exist. According to Eq. (A5), this integral is the di�erence between the exact and the asymptotic solution
Eq. (2) for SIFs of a semi-in®nite crack situated at a unit distance from the free boundary and subjected
to uniform load s0 over the ®xed length x. The exact solution for a semi-in®nite crack is, in fact, an
asymptotic one for the solution for a long ®nite crack of length lf>>x, uniformly loaded at length x. The
latter does exists (e.g. Savruk, 1981) and therefore, I0 exist as well. Hence, I0 <1 and Eq. (A9) can be
made less than e/2 by choosing a su�ciently small h. Thus,

IN40 as
l

h
41: �A10�

Similarly,

IT �
�l
0

fT

�
x

h

�
t�x�ds as

l

h
41: �A11�

Therefore, Eqs. (2) and (3) also correctly give the two successive main asymptotic terms for the
distributed load s(x ), t(x ), provided that�l

0

js�x�jdx <1,

�l
0

jt�x�jdx <1,

s�x�4s0 <1,

t�x�4t0 <1 as
l

h
41: �A12�

It should be noted that if both the total force and moment of the applied load are zero, this
asymptotic representation does not make sense, and Eqs. (2) and (3) cannot be used. Otherwise, it
provides a justi®cation of the beam approximation (e.g., Rice, 1968a, 1968b; Slepian, 1981; Williams,
1988; Bolotin, 1996), according to which, it is possible to apply the beam theory (i.e., the assumption of
linear stress distribution through the beam length) even at the crack-tip region with high stress
concentration (see, for example, the work by Williams, 1988).
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Appendix B. Matching the energy release rates

It will be shown here that the direct matching of the energy release rates computed from the
elementary beam solution and the SIFs (necessary for the determination of the elastic clamping
coe�cient, k ) is possible with the adopted accuracy. In the case of loading by concentrated forces, N
(Fig. 2), it is therefore necessary to show that

U � 2
N 2

E

�
l

h

�3�
1� k

4

h

l
� h

l
a

�
h

l

��
, a

�
h

l

�
40,

�
h

l
40

�
: �B1�

Here the term (l/h )2a(h/l ) includes the work done by the concentrated forces on the displacements of
the crack faces, which are not accounted for by the elementary beam solution. These displacements are:

1. the correction to the neutral axis displacement which consists of a term O(l/h ) and exponentially
vanishing terms (Timoshenko and Goodier, 1970),

2. global displacement of the lower face of the crack which, for the case of concentrated force applied at
a distance l, is of the order of ln(l ), and

3. local displacements at the points of application of the load which do not depend on l.

This means that indeed in Eq. (B1), a(h/l )4 0 as h/l4 0.
Accordingly, the energy release rate is

J � dU

dl
� N2l2

Eh3

"
6� k

h

l
� h

l
a

�
h

l

�
ÿ
�
h

l

�2

a 0
�
h

l

�#
: �B2�

Comparing Eq. (B2) with the energy release rate computed using SIFs [see Eq. (3)],

J � dU

dl
� N2l2

Eh3

�
6� 12d

h

l
� o

�
h

l

��
as

h

l
40, �B3�

we arrive at Eq. (19).

Appendix C. Contribution of the lower face displacement into the area of crack opening

The displacement of the lower crack face can be estimated by considering a half-plane with the step
boundary BDOE (Fig. C1), loaded by the applied normal load, s(x ), acting over length l of part OE
and an additional load, (sc( y ), tc( y )) which replaces the action of the removed part, EOBC.

The leading asymptotic term for the displacement caused by load s(x ) is obviously given by the
corresponding displacement of a half-plane with straight boundary half of which is loaded by s(x ) and
another half is free. This displacement is of the order of �s as h/l4 0, where �s � hs�x�i is the average
stress.

The leading terms of the part of the displacement caused by the additional load, (sc( y ), tc( y )),
should coincide with the displacement of the straight boundary of the half-plane loaded at the origin by
a concentrated force, (N, T ) and a moment, M, representing this load. Due to equilibrium, N,T0 �sl,
M0 �sl2. Therefore, near the crack tip (in a region of the length of order h ) the maximum displacement
will be of the order of E ÿ1 �sl2hÿ1. Far from the origin, the displacement will increase as E ÿ1 �sl ln xhÿ1.

Now the part of the area of the crack opening, Slower, associated with the displacement of the lower
face of the crack consists of the contribution of the near-tip region, which is of the order of E ÿ1 �sl2, and
the contribution of the logarithmically increasing displacement, which is of the order of E ÿ1 �sl2 ln lhÿ1.
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As a result,

Slower0E ÿ1 �sl2 ln
l

h
: �C1�
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